Chapter 9: Quadratic Functions and Equations

Dear Family,
Your child will graph quadratic functions, explore the characteristics of quadratic functions, and solve quadratic equations. A quadratic function is any function that can be written in the form $y=a x^{2}+b x+c$, where a, b, and c are real numbers and $a \neq 0$. You can identify a quadratic function when its equation fits the standard form or when a table of ordered pairs has constant second differences.
$y+2 x=4 x^{2}$
$-\frac{-2 x}{y}=\frac{-2 x}{4 x^{2}-2 x}$

This function is quadratic because it can be written in standard form where $a=4, b=-2$, and $c=0$.

This function is quadratic because a constant change in x corresponds to constant second differences of y.

The graph of a quadratic function is a U-shaped curve called a parabola. The highest or lowest point on a parabola is called the vertex. When the leading coefficient, a, is positive, the y-value of the vertex is the minimum value of the function. When a is negative, it is a maximum.

For $y=2 x^{2}+8 x$, the value of a is +2 , so the parabola opens upward.

This makes the vertex the lowest point on the curve, and the minimum value of the function is -8 .

A zero of a function is an x-value that makes the function equal to 0 . A zero of a function is the same as an x-intercept of its graph. A quadratic function may have two, one, or no zeros. its other half.

Chapter 8 explores transformations of the parent function $f(x)=x^{2}$.

Transformed Function		Relationship to the Parent Function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{x}^{\mathbf{2}}$
$f(x)=a x^{2}$	$\|a\|>1$	the parabola is narrower
	$\|a\|<1$	the parabola is wider
$f(x)=x^{2}+c$	$c>0$	the parabola is translated c units up
	$c<0$	the parabola is translated c units down

Related to quadratic functions are quadratic equations: $a x^{2}+b x+c=0$. Because y is replaced by 0 , the solutions of a quadratic equation are the same as the zeros of a quadratic function. So, one method of solving a quadratic equation is to graph the related function and find its x - intercepts. You can solve some quadratic equations by factoring.

You can solve other quadratic equations by using a square root. The square-root method is most convenient when one side of the equation is a perfect square, like x^{2} or $(x+3)^{2}$.
Completing the square is a method of solving a quadratic equation by creating a perfect square.

If you complete the square for the general equation $a x^{2}+b x+c=0$, you get the Quadratic Formula:
The solutions of $a x^{2}+b x+c=0$, where $a \neq 0$, are $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Sincerely,
Ms. Talath Ansari

